
S T E A D Y  M O T I O N  O F  A GAS B U B B L E  

B.  N .  Y u d a e v ,  O .  V .  T s i r l i n ,  
a n d  A.  A.  Y u s h k i n  

IN A L IQ U I D  

UDC 532.529.6 

A method is  p roposed  for  calculat ing the veloci ty  of a gas bubble during a s teady  lift  in a 
liquid, on the assumpt ion  that  the bubble t r a n s m i t s  to the medium an a r r a y  of weak waves .  

In the design of industr ia l  bubblers  it is n e c e s s a r y  to de t e rmine  the length of t ime  the gaseous  and the 
liquid phases  r ema i n  in contact .  It has been es tab l i shed  that  shor t ly  a f t e r  the injection (~10 -s see) a gas 
bubble begins to move at a constant  veloci ty ,  i .e. ,  the l ift  force  is balanced by the forces  of iner t ia l  and 
viscot~s d rag  in the liquid. 

The motion of a sol id s phe re  in a liquid was f i r s t  studied theore t i ca l ly  by Stokes [1], who has a lso  
der ived  a fo rmula  for  the ve loc i ty  of s teady  motion appl icable  at values  of the Reynolds number  Re << 1. 
Oseen [2] has ref ined Stokes '  solution by using for the d rag  coeff icient  two t e r m s  of the s e r i e s  expansion 
in powers  of Re; his solution is valid when Re ~ 1. Hadamard  and Rybczynski  have extended this analys is  
to include bubbles and d rop le t s ,  a s s u m i n g  that  s l ip  flow occurs  at the in terphase  boundary [3]. These  
authors  a s sumed  that  the tangent ia l  components  of veloci ty  as well as the no rma l  and tangential  s t r e s s e s  
a r e ,  r e spec t i ve l y ,  equal on both s ides  of the [nterphase boundary.  Such an assumpt ion  definitely implies  
gas  c i rcula t ion  inside the bubble. This p r o c e s s  was then analyzed by Hill [4]. 

By introducing the concept  of dynamic su r face  s t r e s s e s ,  Bouss inesq  [5] hoped to accotmt for  the 
nonuni formi ty  of s t r e s s e s  at the in te rphase  boundary.  For  a smal l  bubble radius  R or for a high Bous-  
s inesq  su r face  v i s c o s i t y  this solution becomes  identical  to the Stokes solution. 

Lev ich  [6] was the f i r s t  one to analyze  the motion of a gas bubble at  a Reynolds number  Re > 1, 
a s suming  ze ro  tangential  s t r e s s e s  at the in terphase  boundary.  He has demons t r a t ed  that  the ve loc i ty  d i s -  
t r ibut ion around a bubble is not much different  in viscous  and in ideal l iquids.  T h e r e f o r e ,  the veloci ty  
dis t r ibut ion in an ideal liquid was  used for  the calculat ion of the d rag  force  and the lift  ve loci ty  of a bubble. 
On the s a m e  p r e m i s e ,  Moore [7] has solved this p rob l em by a somewhat  different  method. 

Applying the flow function to the motion of gas inside and using Lev i eh ' s  concept  of a thin boundary  
l a y e r  a t  the bubble su r face ,  Chao has de te rmined  the lift  ve loci ty  of a bubble with gas c i rcula t ion .  Chao ' s  
fo rmula  is analogous to M o o r e ' s  formula ,  but d i f fers  f rom the l a t t e r  by including a t e r m  which depends on 
the gas v i scos i ty  and dens ity inside the bubble. Var ious  aspec t s  of the p rob lem were  cons idered  by Miyagi 
[9] as well as by Bond and Newton [10], a lso  by other  au thors .  

The final r e su l t  of each  of these  r e s e a r c h e s  was a re la t ion between the constant  l ift  ve loci ty  and the 
rad ius  of  a bubble. The p roposed  fo rmulas  agree  c lose ly  enough with t es t  data up to Re ~ 400. However ,  
none of them fits the t e s t  data over  any wider  range  of the Reynolds number .  This l imi ta t ion of the theor ies  
developed so far  is hardly  due to an incomplete  considera t ion  of v i scos i ty  effects :  it is e a sy  to see  that,  
no m a t t e r  how far  the calcula t ion of viscous  d rag  forces  were  to be ref ined,  the resu l t ing  co r r ec t ions  of 
the fo rmula  s t r u c t u r e  would be much s m a l l e r  than those cal led for.  Consequently,  more  appropr ia te  
solut ions to the p r o b l e m  mus t  be sought by a d i f ferent  approach.  

The bas ic  def ic iency of those p roposed  theor ies  is ,  in our opinion, that  they have ignored the undular 
c h a r a c t e r  of in teract ion between a moving bubble and the ambien t  medium.  This conclusion is based on the 
genera l ly  valid a ssumpt ion  that  the p r e s s u r e  is low when a bubble moves  at a low re la t ive  ve loc i ty  and that,  
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Fig. 1. Distr ibution of (a) p r e s s u r e  (normal} over  the bubble su r face  and (b) tangential  ve loc -  
ity component  in the adjoining liquid l a y e r ,  at  the instant when a weak pulse is applied.  

Fig. 2. Lift  ve loc i ty  U~ ( m / s e c )  of a i r  bubbles in water :  1) approximat ion of t es t  data; 2) 
according to formula  (8) for a spher ica l  bubble (diameter  db, ram); for  el l ipsoidal  bubbles 
accord ing  to formula  (21) with: 3) e = 0.2; 4) 0.5; 5) 0.8. 

t he r e fo re ,  the liquid may  be considered incompress ib le .  It s eems  jus t  as  probable  and is thus c o r r e c t  
to a s sume  that at low lif t  veloci t ies  there  ex is t  no eddies in the ambien t  medium around a bubble.  These  
two hypotheses  yield a paradoxical  p r e s s u r e  distr ibution over  the su r face  of a body (d 'Atember t , s  paradox):  
the net p r e s s u r e  force  on a bubble equal to zero .  A p r e s s u r e  distr ibution accord ing  to this solution to 
the p rob lem is paradoxica l  not only on account of a ze ro  drag on a moving bubble but a lso  because  it i m -  
pl ies  that the p r e s s u r e  coefficient  will be negat ive at  the leading hemisphe re .  F u r t h e r m o r e ,  for any p r e s -  
sure  in the ambient  medium there  will ,  theore t ica l ly ,  be some veloci ty  at  which the p r e s s u r e  at the lead-  
ing hemisphe re  becomes  negative.  This solution was obtained on the assumpt ion  of a potential  flow; the 
flow could be eddy, however ,  and not only because  of friction forces  but a lso  because  of normal  p r e s s u r e  
fo rces .  For  example ,  the appearance  of eddies a lways accompanies  the motion of a body in a medium 
inside a c losed vesse l .  The basic  p rob lem then s e e m s  to be the determinat ion of normal  p r e s s u r e s .  

We will a s s u m e  that  the flow around a bubble is nonsepara t ive ,  i .e.,  an e l e m e n t a r y  je t  s t a r t i ng  a t  
the point | = 0, r = R t e rmina t e s  a t  the point | = ,v, r = R. As is well  known, the p r e s s u r e  at  the f ront  
of an acoust ic  wave is propor t iona l  to the densi ty  of the medium o, the veloci ty  of sound in the medium c, 
and the increase  in the veloci ty  of the medium Au. This veloci ty increment  is equal to the project ion of 
the lift veloci ty  on the radial  axis:  Au = U~ cos | The leading hemisphe re  t r a n s m i t s  compres s ion  waves 
and the t ra i l ing  hemisphe re  t r ansmi t s  r a re fac t ion  waves ,  as during d isp lacement .  A r igo rous ly  cons t ruc ted  
theory  of motion in a liquid would have to cons ider  that an a r r a y  of waves is t r ansmi t t ed  by the body during 
this motion. The solution of such a p rob lem requ i r e s  a specia l  study, however ,  because  of its complexi ty .  
Fo rmula s  for the d rag  force  on a bubble and for the veloci ty  of s teady lift  will be der ived  here  on the 
bas is  of a qual i tat ively novel but a l so  s i m p le r  assumpt ion .  

We cons ider  a spher  ical gas bubble {Fig. 1) which is init ially at  s tandst i l l  in a liquid and then r ece  ives a 
shor t  weak impulse.  The upper hemisphe re  tends to c o m p r e s s  the adj oining medium,  whereas  the lower  h e m i -  
sphe re  t r i e s  to sepa ra t e  f r o m t h e  adjoiningliquid.  A compres s ion  wave will t r ave l  upward anda  ra re fac t ion  
wave will t r ave l  downward. It is a s s um ed  that  the liquid r e m a i n s  continuous eve rywhe re .  A veloci ty  jump 
will occur  at the wave fronts .  If the veloci ty  of the bubble center  is U~, then the project ion of the absolute 
veloci ty  of a liquid pa r t i c l e  on the radia l  axis  at a given point will v a r y  f rom 0 to Au. The p r e s s u r e  d i s -  
t r ibution p over  the bubble su r face  must  be analogous.  The max imum absolute value of p r e s s u r e  Pmax,  at  
the uppermos t  point and a t  the l o w e r m o s t  point of the sphere ,  is tmknown. The net  no rma l  p r e s s u r e  force  
is 

N = 2 f Pm~x cos2OR'2sin OdO= ' 4  .'tR~p,,~a,~. (1) 
�9 3 
G 

1258 



We will now explore the s t ruc ture  of Pmax. In order  to be able to move, a bubble must pe r fo rm 
work  on displacing a liquid par t ic le  f rom the uppermost  point to the lowermost  point of the surface.  More-  
over ,  this must t ransp i re  within a t ime t I = 2R/Ucr i.e., while the bubble is lifted through a distance 
equal to its d iameter .  The accelera t ion  of a par t ic le  moving down along the bubble surface is 

- -  I dp Pmax Sin a - - - (2) 
�9 pR dO pR 

The densi ty of the liquid P may be considered constant here.  The velocity of such a par t ic le  is 

t O 

u = Uo + .t' a (~) dr = u o + .i' a (0) de (3) 
0 0 

with u 0 denoting the initial veloci ty (at the uppermost  point) which is to be equated to zero.  Differentiating 
(3) with respec t  to the upper l imit of the integral ,  then insert ing (2) into the obtained equation, and inte- 
grat ing the resul t  will finally yield 

(9 . / /  Pmax 
u = 2 s i n  - ~ - ]  9 (4) 

The t ravel  t ime of a par t ic le  down along the bubble surface  is 

I fi dff  2R 
t -- ~ - t, - (5) 

2 I /  Pm,~: 6"~ sin--O C":~ 
I , p 2 

It follows from (5) that the p r e s s u r e  at  the uppermost  point of the bubble is proport ional  to the velocity 
head. The numer ica l  value of Pmax cannot be found because,  when the l imits are  inserted,  the integral 
in the equation tends to infinity: an infinitely long time of part icle  t ravel  f rom the uppermost  point to the 
lowermos t  point on the bubble sur face ,  the initial velocity of such a part icle  being zero.  This situation 
is encountered also in c lass ica l  analyses of the problem. Fu r the rmore ,  by virtue of the continuity of the 
velocity distribution in the medium, the motion of par t ic les  along the nea res t  s t reaml ines  is very  slow. 
This is ve ry  interest ing:  if the liquid is considered ideal, then masses  of it must adjoin the bubble both 
at the top and at the bottom. The problem of determining these masses  and analyzing their behavior be-  
comes of fundamental importance here.  

In our solution we let the maximum p r e s s u r e  be equal to the velocity head: 

pU~ 
Pm~: = 2 (6) 

We then equate the total drag force and the lift force 

4 nR"- 9U~ 4 nR3pg" (7) 
3 2 3 

From this we obtain the s teady lift velocity of a bubble (g denotes the accelerat ion of free fall): 

U~----! 2gR --~4.431/R,m/sec. (8) 

Values of U~ according  to (8) a re  compared  in Fig. 2 with test  data f rom [11]. The agreement  is genera l ly  
more  sa t i s fac tory  than with ea r l i e r  formulas .  We will explain some discrepancies  between theory and 
experiment .  

Bubbles 2 mm in d iameter  or  l a r g e r  cease  to be spherical .  The flatness of the U~o = f(R) tes t  curves 
conf i rms the validity of the preceding analysis : if a spher ical  bubble has become ellipsoidal (with the same 
volume), then friction does not change as much as the drag due to normal  p r e s s u r e  force increases .  

We will const ruct  an analogous scheme for calculating the s teady lift velocity of a bubble shaped as 
an ellipsoid of revolution. The equation of an ellipse in polar coordinates with the origin at one focus is 

r = ~} , (9) 
1 - -  e cos 
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w h e r e  r deno te s  the  r a d i u s - v e c t o r  of a po in t  on the  e l l i p s e ,  ~o = [ ( ~ / 2 ) - |  (angle  @ is i n d i c a t e d  in F ig .  1); 
e = c / a  deno te s  the e c c e n t r i c i t y ;  a and  b a r e  the  m a j o r  (hor izonta l )  and the  m i n o r  ( v e r t i c a l )  s e m i a x i s ,  
respect ively;  c = aC'-~-b2; and ~ = b 2 / a  is another parameter.  Angle ~0 from a point on the equator to the 
u p p e r m o s t  po in t  of  the  bubble  v a r i e s  f r o m  0 to  

% = a r c t g b  = a r c t g V  l - - e  ~ 
c e (I0) 

The  ang le  be tween  the  t a n g e n t  to  the  c u r v e  and the p o l a r  ax i s  is 

dr 
- -  r ctg(p 

a = arctg d(p 
dr ' (11) 

ctg q0 - -  r 
d~ 

w h e r e  

dr - -  b~e sin 
= - (12) 

dq~. a ( 1 --8 COS q~)" 

W e  i n s e r t  (12) in to  (11) and  use  the r e s u l t  f o r  c a l c u l a t i n g  the p r o j e c t i o n  of  the  n o r m a l  p r e s s u r e  f o r c e  on the  
v e r t i c a l  a x i s :  

p [r(cp), q)] p (cO) sin (p 
= e~. (13) P b = p c ~  = [ e - -  cosq)] 2 j /1 - -  2coos ~ -7 

] I- , .  s-~n~-/ 
The  p r o j e c t i o n  of  the  v e l o c i t y  on the  n o r m a l  to  the e l l i p s e  at  any  poin t  is 

U n = U| COS a. 

T h e r e f o r e ,  w e  have  for  Pb 

(14) 

�9 2 Pmax sin (D 
Pb = (15) 

1 -- 2~ cos q0 -k e "~ 

T h e  d e f o r m a t i o n  of  a bubble  does  no t  change  i t s  v o l u m e :  

4 ~a2b _ 4 ~Ra. (16) 
3 3 

U s i n g  the l a s t  e x p r e s s i o n  and the e x p r e s s i o n  fo r  the  e c c e n t r i c i t y ,  we obta in  

R 3 
a - -  ___ _ ;  b = R k .  1 - - e  2 

~J i -  ~" (iv) 

The  ne t  f o r c e  of n o r m a l  p r e s s u r e  is found a c c o r d i n g  to the e x p r e s s i o n  

~o 

t 
" rpb(~)d  ~ 

N = 2 ,  23 (r cos ~ - -  l /  a 2 - b  2) s i n ( (p - - a )  
0 

i' (cos (p - -  e) sin" q~dq~ 
= Pmax4aR 2 ~ (1 __e,)o ,. (I - -  coos(p) ~ }#l  - -  2e cos qo %e 2 (18) 

0 

As b e f o r e ,  we now find the  t i m e  in which a l i qu id  p a r t i c l e  moves  f r o m  the u p p e r m o s t  poin t  to the  l o w e r -  
m o s t  po in t  trader a p r e s s u r e  d i s t r i b u t i o n  p = PmaxCOS~O, and we then equa te  it to  the t i m e  in which  the 
bubb le  has  been  l i f t e d  t h r o u g h  a d i s t a n c e  equal  to i ts  m i n o r  ( v e r t i c a l )  a x i s .  F r o m  th i s  equa t ion  fo l lows  
the  s t r u c t u r e  of Pmax:  

(90 

i---e 2 pU~ iS (l--28e~ [-~ (19) 
Pmax = - - 4 - -  2 (1--COOS q0)e(g ' l - -2ecostp-~-e~--sin(p)  '/2 " 

J 
- -  q)o 
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A c c o r d i n g  to (19), P m a x  is p r o p o r t i o n a l  to  the  v e l o c i t y  head  a n d d e p e n d s  on the  e c c e n t r i c i t y  of the 
e l l i p t i c a l  bubble  s e c t i o n .  L e t t i n g  P m a x  = 0 U ~ / 2  and equa t ing  the f o r c e  N to the l i f t  f o r c e ,  we have  

q~o 
pU~ a . ~" (cos q) --- e) sin~q~dq: 4 

4aR ~ i / (1 - -  ca) ~ } = - -  2 , (l - -  e cos q)) 4 W l - - 2 e c o s ~ - - ~  ~' 3 
0 

aRa,og. 

Th i s  y i e l d s  the  s t e a d y  l i f t  v e l o c i t y  of a bubb l e :  

F 2 _:  
p l / '  -~j- g I / -R 

3 . . . . .  I / i" (c~ ~P - -  s) sin~ (Pdq~ t . '  1 - - e  ~ 
�9 i l  - -  e cos  q))~ ~" 1 - -  2e cos  c0 + e 2 
0 

( 2 0 )  

(21) 

The  v e l o c i t y  Uoo c a l c u l a t e d  a c c o r d i n g  to f o r m u l a  (21), a s  a funct ion of the i n i t i a l  r a d i u s  R and the 
e c c e n t r i c i t y  s of a bubb le  in mo t ion ,  is  shown in F ig .  2, The  e f f ec t  of  s is  qui te  a p p r e c i a b l e .  F o r  a bubb le  
wi th  a r a d i u s  R = 5 m m ,  for  i n s t a n c e ,  U~ = 30.1 c m / s e c  when v = 0.1,  a = 5.01 m m ,  and b = 4.98 r am,  
but  U~ = 11.9 c m / s e c  when s = 0.8, a = 5,93 m m ,  and b = 4.55 m m :  the  l i f t  Ve loc i ty  shou ld  thus  d e c r e a s e  
2.5 t i m e s .  

In c o n c l u s i o n ,  we no te  tha t  the  t r u e  s h a p e  of a gas  bubb le  mov ing  in a l i qu id  is not  e l l i p s o i d a l  bu t  
m o r e  i n t r i c a t e .  The  d a t a  p r e s e n t e d  h e r e  can be  use fu l  in p r o b l e m s  c o n c e r n i n g  the mot ion  of  g a s  bubb le s  a s  
we l l  as  of o t h e r  bod i e s  in a l i qu id .  
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NOTATION 

Is the Reynolds number; 
Is an angle, deg; 
ts the instantaneous radius, m; 
ts the radius of a spherical bubble, m; 
ts the  d e n s i t y  of  the  l i q u i d ,  k g / m 3 ;  
m the v e l o c i t y  of  sound  in the  l i qu id ,  m / s e e ;  
ts the i n c r e m e n t  of  v e l o c i t y  of the  l iqu id  a c t e d  on by  the  bubble  s u r f a c e ,  m / s e e ;  
is  the s t e a d y  l i f t  v e l o c i t y  of  a b u b b l e ,  m / s e e ;  
ts the p r e s s u r e ,  N / m 2 ;  
ts the ne t  f o r c e  of n o r m a l  p r e s s u r e ,  N; 
ts the t i m e ,  s e c ;  
ts the a c c e l e r a t i o n ,  m 2 / s e e ;  
~s the v e l o c i t y  of  a l i q u i d  p a r t i c l e ,  m / s e e ;  
ts the a c c e l e r a t i o n  of  f r e e  fa l l ,  m / s e e 2 ;  
~s the bubble  d i a m e t e r ,  ram;  
ts the  m a x i m u m  p r e s s u r e  on the bubble  s u r f a c e ,  N / m 2 ;  
~s the t i m e  (in the  i n t e g r a t i o n ) ,  s ec ;  
ts an a n g l e  (in the  i n t e g r a t i o n ) ,  deg;  
ts the e c c e n t r i c i t y ;  
,s  a p a r a m e t e r ,  m; 
a r e  the  s e m i a x e s  of  an e l l i p s e ;  

is  the  p o l a r  a n g l e ,  deg;  
is the  s lope  ang le  of a t a n g e n t  to the  e l l i p s e ,  deg .  

1 .  

2. 
3. 

4. 
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